PHYTOCHEMICAL REPORTS

ISOLATION AND STRUCTURE OF ANKAFLAVIN: A NEW PIGMENT FROM MONASCUS ANKA

PERCY S. MANCHAND* and W. B. WHALLEY

School of Pharmacy, University of London, London WC1

and

FA-CHING CHEN

Department of Chemistry, National Taiwan University, Taipei, Taiwan (Formosa)

(Received 1 May 1973. Accepted 1 June 1973)

Key Word Index-Monascus anka; Fungi; polyketides; ankaflavin; manascin.

In certain regions of Asia the red rice ('Ang Khak') is often used as a colouring matter in the preparation of certain foods and alcoholic beverages, for example the Taiwan wine, 'Hong Ru'. The fungus *Monascus purpureus* has been shown to be responsible for this colour.¹

A systematic and comprehensive study¹ of the secondary metabolites produced by the genus *Monascus* has resulted in the isolation and structural characterization of monascin (I) and rubropunctatin (III) from *M. rubropunctatus* Sato, monascin and monascorubrin (IV) from *M. purpureus* Wenti, and monascin from *M. rubriguosus* Sato. As a continuation of this study, and with the hope of isolating metabolites which may be of significance in the biogenesis of these interesting pigments, we initiated studies on the species *M. anka* Sato, the isolation of a new pigment, ankaflavin (II), from this organism is now reported.

$$(I) R = n-C_5H_{11}$$

$$(II) R = n-C_7H_{15}$$

$$(IV) R = n-C_7H_{15}$$

DISCUSSION AND RESULTS

Extraction of the mycelia of M. anka and chromatography of the extract on cellulose yielded a yellow and a red fraction. Further chromatography of the red fraction on celite² gave rubropunctatin and monascorubrin. Extensive TLC on silica, with 25% ether in benzene, gave ankaflavin and the slightly more polar monascin.

- * Direct any correspondence to this author at the Chemical Research Department, Hoffmann-La Roche, Inc., Nutley, NJ 07110, U.S.A.
- ¹ WHALLEY, W. B. (1963) Pure Appl. Chem. 7, 565; and references cited therein.
- ² HADFIELD, J. R., HOLKER, J. S. E. and STANWAY, D. W. (1967) J. Chem. Soc. C, 751.

Ankaflavin has the molecular formula $C_{23}H_{30}O_5$ (M⁺ 386·2055), m.p. 120–121° and $[\alpha]_D^{25} + 454\cdot0^\circ$ (c 1·01, CHCl₃). Its uv spectrum ($^{dioxan}_{max}$ 212, 228 and 382 nm. $\epsilon = 14$ 300, 16 400 and 13 200 respectively) was virtually superimposable on that of monascin, suggesting a common chromophore. The IR spectrum of ankaflavin indicated the presence of a γ -lactone (1785 cm⁻¹), a saturated ketone (1720 cm⁻¹), an α,β -unsaturated ketone (1673 cm⁻¹), a vinyl ether (1648 cm⁻¹) and a trans double bond (958 cm⁻¹). The NMR spectrum revealed a close similarity to that of monascin, 3a,b the only difference being the greater intensity of the 'methylene envelope' centred at δ 1·30, integration of this band indicates the presence of 10 alkyl methylene protons.

The above spectral evidence suggests that ankaflavin is structurally very similar to monascin. This conclusion is substantiated by a study of the MS of the two metabolites. Ankaflavin showed a molecular ion peak $(m/e\ 386)\ 28\ m.u.$ higher than that of monascin, but in both compounds (see Ref. 3c) the base peak occurs at $m/e\ 162$, this results from a retro-Diels-Alder cleavage of the cyclohexenone ring giving fragments a and b; fragmentation of b to give the oxepin c (m/e 134) is also common to both compounds. The only other prominent peak in the MS of ankaflavin (and monascin) occurred at $m/e\ 69$, this could arise from a as indicated.

The spectral evidence presented, taken in conjunction with the fact that ankaflavin and monascin are co-metabolites of M. anka, suggests structure (II) for ankaflavin. Ankaflavin thus bears the same structural relationship to monascin as rubropunctatin does to monascorubrin. The configuration at C_6 , C_7 and C_{11} is still uncertain, but certain spectral features support the relative stereochemistry depicted in (II). Thus, the large coupling constant (J 12 Hz) associated with the protons on C_6 and C_{11} dictates that these protons must bear a trans relationship to each other. The high IR frequency (1785 cm⁻¹) at which the lactone group in ankaflavin absorbs suggests a trans fusion of this function to the cyclohexenone ring.

EXPERIMENTAL

Monascus anka Sato was grown at 31–33° for 1 month in a liquid medium consisting (for 1 l.) of 1·0 g peptone, 2·0 g KNO₃, 3·0 g tartaric acid, 100 g sucrose, 2·0 g (HN₄)₂HPO₄, 0·5 g MgSO₄.7H₂O, 0·5 g ZuSO₄.7H₂O and 0·1 g CaCl₂.6H₂O. The mycelia were harvested, washed with H₂O, air dried at room temp. and powdered. This powder was then extracted with *n*-hexane. The extract was concentrated, stored at 0° for 2 days and filtered. The crude yellow pigment was collected and separated into a yellow and a red band by chromatography on cellulose (Whatman, standard grade) with *n*-hexane as eluent.

The yellow band was then subjected to repeated preparative-scale TLC on silica gel (1 mm thick, 20×20 cm plates) with 25% ether in benzene. Ankaflavin, which is slightly less polar than monascin was collected (by extracting into methylene-chloride and ethyl acetate) and crystallized from ethanol to give yellow prisms, m.p. $120-121^{\circ}$. One gram of crude yellow pigment yielded 74 mg of ankaflavin. Ankaflavin has the following physical properties: $[\alpha]D^{25} + 454\cdot0$ (C 1·01, CHCl₃); λ_{max} (Dioxan): 212, 228 and 382 nm($\epsilon = 14$ 300, 16 400 and 13 200 respectively); ν_{max} (CHCl₃): 1785, 1720, 1673, 1648 and 958 cm⁻¹; NMR (CDCl₃): δ 0·90 (3H,t,t) 5 Hz), 1·30 (10H,t), 1·48 (3H,t), 1·86 (3H,t), 7, 1 Hz), 2·62 (2H,t), 3·88 (1H,t), 10, 5 Hz), 3·84 (1H,t), 14 Hz), 4·7 (1H,t), 14 Hz), 5·04 (2H,t), 12·6), 5·32 (1H,t) 5·90 (1H,t), 15, 1 Hz) and 6·50 (1H,t) of t, 15, 7 Hz); MS: t0 (rel. intensity) 386·2055 (M+, 33) 188(33), 169(100), 134(33), 127(53), 69(83), 57(70), 55(66), 44(90), 43(90),

Acknowledgement—We are indebted to Messrs. W. H. Wang and T. S. Shih for their help with the culturing of M. anka.

³ (a) Fielding, B. C., Holker, J. S. E., Jones, D. F., Powell, A. D. G., Richmond, K. W., Robertson, A. and Whalley, W. B. (1961) *J. Chem. Soc.* 4579; (b) Kumasaki, S., Nakanishi, K., Nishikawa, E. and Ohashi, M. (1962) *Tetrahedron* 18, 1195; (c) Chen, F. C., Manchand, P. S. and Whalley, W. B. (1971) *J. Chem. Soc.* C, 3577.